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Abstract—Chemical reaction networks (CRNs) are
abstractions of distributed networks that form the
foundations of many natural phenomena such as bio-
logical processes. These can be encoded and/or com-
piled into DNA and have been shown to be Turing
complete. Before CRNs are implemented in a physical
environment, they are often simulated in programming
environments. Researchers have recently designed a
software testing framework for CRNs, however, repair-
ing CRN programs is still a manual task. Finding and
repairing the faults can be difficult without automated
support. In this paper we present CRNRepair, a pro-
gram repair framework for CRN programs. We built
our framework on top of an existing APR framework
and use a testing infrastructure built in the Matlab
SimBiology package. We adapt it to use the SBML
representation for its abstract syntax tree. In a case
study on 19 mutant versions of 2 programs, we find
plausible patches for 90% of one of the programs, and
50% of the other. We find several common types of
repairs, which differ from the correct programs, but
are functionally correct.

Index Terms—program repair, chemical reaction net-
works

I. Introduction

Chemical Reaction Networks (or CRNs) are an emerg-
ing paradigm for computing. (see [1], [2] for example)
They consist of a set of abstract chemical reactions that
represent a distributed computing environment, and have
been used for years to describe the interactions between
matter [3]. In recent years, technology has evolved to
design molecules that can simulate an arbitrary CRN
[4]. This transforms the CRN model from a descriptive
model of nature to a prescriptive programming language
for manipulating matter.

A CRN is characterized by a set of species and a multiset
of reactions over the species. Reactions consist of a list of
reactants, a list of products, and a reaction rate constant.
The species combined with the reactions constitute the

program. A common syntactical expression of a CRN is
given by

X1 1−→ Y

X2 + Y
1−→ null

This CRN performs the subtraction of X1-X2 and places
the result in Y (as we will explain in more detail in the
next section). There are two reactions with rate constants
of 1, and it is common to omit rate constants in this case.
In the first reaction X1 is the reactant species and Y is the
product species. Similarly, in the second reaction X2 and
Y are the reactant species, and null specifies that there no
products (or no product species that we care about).

As in any software programming language, it is easy
for programmers to make mistakes. For instance, suppose
we mistakenly used X2 in the first equation instead of
X1. This would lead to incorrect behavior. Faults in CRNs
can be subtle and are sometimes flaky in behavior [5]. It is
also possible to add extra reactions which might appear to
create an incorrect program, but instead act as catalysts
that speed up the program. We discuss this in our study.

In recent work, we developed a software testing frame-
work, ChemTest [5]. This provides scalability over existing
approaches (model checking). While this is an important
step in CRN validation, there is no automated approach
to localize or repair faults in CRN programs once they are
discovered. Even for the small programs we used in our
evaluation, it can be difficult to identify which program
elements are wrong and to identify a fix. As these programs
become more prevalent, automated repair techniques have
potential to help developers.

In this paper, we build the first (that we are aware
of) automated program repair framework for CRNs called
CRNRepair. Figure 1 shows an overview of CRNRepair.
It extends an existing genetic improvement framework [6]
and combines this with a Matlab SimBiology based testing
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Fig. 1. CRNRepair Framework. Lower portion is the PyGGI engine. Upper portion is the Matlab test driver.

framework. The shaded boxes show our extensions. We
added a simulated annealing local search and a random
search to the genetic improvement framework. We also
extended the tree engine to support the Systems Biology
Markup Language (SBML) to represent CRNs [7]. Our
test driver module runs SimBiology test cases and returns
a fitness based on the test results. Combining these two
frameworks together gives us a powerful new tool for the
engineering of molecular programs.

The contributions of this paper are:
• A CRN repair framework;
• A case study demonstrating its potential; and
• An evaluation of the types of patches and trade-off

between iterations and epochs.
The rest of this paper is organized as follows. Section

II gives background information on CRNs and the frame-
works and tools used in this paper. Section III describes
our algorithms and framework. Sections IV and V presents
our case study. We conclude and present future directions
in Sections VI and VII.

II. Background

There are two main semantic models or interpretations
of the CRN model: deterministic and stochastic, and this
paper focuses on the stochastic model [8]. However, it
should be noted that this work is easily extended to the
deterministic model with minor changes to the software
frameworks. The stochastic model operates on individual
molecules. We return to the example above to illustrate
this model. In the example, initial molecule counts must
be assigned to all species. For example, X1, X2, and Y
are assigned initial values of 5, 2, and 0, respectively. This
example CRN computes the difference of two input values
of X1 and X2 (i.e. X1−X2) with output of 3 in Y when
the computation finishes. In this CRN, X1 and X2 are
input species, and Y is the output species.

Since the stochastic model is a distributed computing
environment, there are multiple correct execution paths
through the CRN program. We illustrate the execution of

the subtraction example through a single correct execution
path in Table I. Each row is the result of a reaction firing
in the computation, and the simulation time that it fires.
This time is calculated by Matlab based on physics and
the laws of mass action [8]; it is meant to represent real
physical time if the chemicals were in nature. Simulation
time 0 represents the initial program state, where X1 and
X2 are set to 5 and 2 respectively. Y is initialized to be 0.

TABLE I
Example of a CRN execution

Time Reaction X1 X2 Y

0 Initial Values 5 2 0
0.0410 X1 −→ Y 4 2 1
0.0863 X1 −→ Y 3 2 2
0.5569 X2 + Y −→ null 3 1 1
1.3327 X1 −→ Y 2 1 2
1.5840 X1 −→ Y 1 1 3
1.6345 X2 + Y −→ null 1 0 2
1.6702 X1 −→ Y 0 0 3
100 End of Simulation 0 0 3

At simulation time 0 only the reaction X1 −→ Y can
fire since there are no Y molecules present to enable the
reaction X2 + Y −→ null. When this first reaction fires
(simulation time 0.0410), a molecule of X1 reacts and is
transformed into a molecule of Y . After this first reaction
fires all species have at least one molecule, so it is possible
for either reaction to fire. When multiple reactions can
fire, the next reaction is chosen randomly according to
the law of mass action [8]. The order cannot be controlled,
hence there are many possible permutations of execution.
Suppose the same reaction fires again next (time 0.0863),
and another molecule is removed from X1 and placed in Y .
The rest of the reactions fire to complete a full execution
of the CRN which stops at simulation time 1.6702 when no
reaction can fire. In this case, the only molecules left are
in Y with a value of 3, which is the result of subtraction
(5−2). Note that even though the state of X1, X2, and Y
do not change after this time, a simulation of this system
may continue to run, in this case until simulation time 100.
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A. Testing CRNs
In prior work [5] we designed a testing framework to test

the correctness of CRN programs. We used requirements
written in a temporal logic and transformed these to
abstract test cases which were instantiated with a range
of concrete values. The logic provides an oracle which is
associated with each abstract test.

Because reactions can fire in different orders, the num-
ber of steps (or time of convergence) on a final answer
can vary. Hence, a simulation time is chosen to evaluate
the answer and if correct at that time, it is considered
correct. We also demonstrated that some faults will cause
test flakiness (pass sometimes and fail other times), hence
the testing framework is run a number of times.

During testing, we differentiate between three different
measures of time, CRN computation time, CRN simula-
tion time, and Matlab execution time.

• CRN Simulation Time. This is the number simula-
tion seconds that Matlab simulates the CRN network.

• CRN Computation Time. This is the minimum
number of simulation seconds after which the state
of the CRN (the molecule count in each species) no
longer changes.

• Matlab Execution Time. This is the number of
CPU seconds the host computer running Matlab
requires in order to run the simulation for CRN
Simulation Time seconds.

Referring back to Table I we see that the CRN Simulation
Time is 100 seconds, and that each reaction fires at a time
relative to the beginning of the simulation. At time 1.6702
the reaction X1 −→ Y fires, after which there are no X1
and X2 molecules left. No further reactions can fire, hence
the molecule counts for each species does not change, and
1.6702 is the CRN Computation Time. Note that the CRN
continues to simulate until time 100,but no data is written
to the log. Table I is similar to the log files produced by
Matlab simulation in that they contain a time, reaction,
and molecule counts for each species. Finally, the Matlab
Execution Time is the real clock time required for Matlab
to run the simulation and produce the log output file
that contains the trace of the simulation. This metric is
important since two distinct behaviors can slow down the
execution of the Matlab simulation.

B. GI and Automated program repair
Genetic improvement (GI) [9], [10] and its sub-domain

of automated program repair (APR) [11]–[14] is a state
of the art technique to evolve program code to improve it
in some way. In genetic improvement we usually focus on
improving a program for a particular non-functional qual-
ity such as energy usage, execution time, memory usage,
etc. In APR we focus on correcting faults in a program.
There exist many approaches (see [10] and [12] for sur-
veys on GI and APR respectively). Common approaches
use stochastic search or evolutionary algorithms. Other

approaches use constructive approaches via constraints,
templates or program synthesis. To date, APR has been
applied primarily to traditional programming languages
such as Java, C++ and Python. More recent work has
proposed the use of APR for fixing Alloy Models [13].

In this research we leverage the Python General Frame-
work for Genetic Improvement 2.0 (PyGGI) [6] which
utilizes a search based approach. It includes algorithms
for both program repair and genetic improvement and
allows the user to easily plug in different search algorithms
and fitness functions. We chose PyGGI because it is built
to be extensible, by separating the logic for repair and
for interacting with programs and obtaining fitness. More
importantly, it can repair programs in multiple program-
ming languages such as Python, Java, C++, and C#
by leveraging an XML program representation. It can be
extended for any language. The user only needs to provide
a parser such as srcML [15] customized for their language
and a testing framework. PyGGI uses existing unit testing
frameworks such as JUnit or pytest to run test cases
and calculate fitness. We describe how we have modified
PyGGI to repair CRNs in the next section.

III. CRNRepair
We now present our repair framework CRNRepair,

shown in Figure 1. In the center of the figure is the PyGGI
framework. This part of CRNRepair controls the search
algorithms, the mutation operators and the core patching
mechanisms. The shaded boxes indicate places where we
have modified PyGGI for CRNRepair. In the top portion,
we see a test driver on the left and the CRN program
representations on the right. Last, on the bottom left,
there is a configuration file which allows us to customize
the options for repair. PyGGI provides options such as the
number of epochs (the overall trials), number of iterations,
and which operators to keep. We keep these, but have
added several others. We can change the search algorithm,
the timeout delay, and require a directory name within
the testing framework (this tells our test driver where to
find the unit tests for a particular subject) and allow the
user to change the size of the tabu list. We present each
modification in more detail next.

A. Search Algorithms (#1)
We begin with our core search algorithms. The PyGGI

framework provides a tabu search. The tabu search starts
with an empty patch and at each iteration, it randomly
selects a mutation operator (replace, insert, delete) and
appends it to the existing patch, as long as the resulting
patch does not already exist on the tabu list (history of all
patches so far). If this patch is better or equal in fitness,
it is accepted and this becomes the new patch. While the
search uses a tabu list to diversify the search area, it does
not allow any patches to be accepted which are worse.

We have added two additional algorithms to the frame-
work. The first is a simulated annealing algorithm. The
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second is a random search. We chose simulated anneal-
ing because bad moves are allowed with a decreasing
probability as the search proceeds [16]. It also takes into
consideration the distance from the current (best) patch
fitness (see Equations 1-3).

Delta = CurrentF itness−NewFitness (1)

SearchT ime = MaxIterations
CurrentIteration (2)

prob = e
Delta

(2×SearchTime) (3)

In these equations, Delta will be a negative number.
The larger it is, and the larger the SearchTime is, the
lower the probability of accepting a bad move will be. We
keep the tabu list to force the search to move to a broader
set of states, but set it to a configurable length, l and
after l iterations we drop tabu items in a first in first out
fashion. This balances the move to newer states, but does
not overly restrict it.

We also implemented a random search which randomly
generates a completely new patch of length between 1
and 10 using random mutation operators. In random
search each iteration is independent of the existing patch.
We heuristically found that most patches were able to
find solutions with a relatively short set of edits, hence
we restrict random patches to length 10. We examine
resulting (successful) patch lengths in our study.

B. Test Driver #2
PyGGI expects a unit test runner to obtain program

fitness. For this, we use the Matlab SimBiology application
[17]. We call Matlab and pass it the current patched
program, run simulations, and return the number of failing
simulations. We follow the work of Gerten et al. [5] and run
each test case multiple times. We simulate each test case
to a fixed simulation time and check our oracle only at that
point. For this work we use a simulation time of 100 and
use 10 repetitions of each test case. We also set a timeout
in the PyGGI program, since some of the mutant programs
will not complete 100 iterations in a reasonable amount of
Matlab execution time. Our fitness is the number of failed
simulations, however, the framework provides additional
information that can be returned. We leave other fitness
functions as future work.

C. Program Representation #3
One of the advantages of using PyGGI for CRNRepair,

is that it provides a choice between line level edits (which
work on individual lines of code and are not cognizant of
program structure) and tree edits which use an abstract
syntax tree (AST) representation of the program. PyGGI
uses XML for its tree representation which allows it to rep-
resent an arbitrary AST (e.g. it is language independent).
To add a new language, one has to provide the parser. For
traditional languages such as C++ we can use srcML [15]
as a parser to provide the AST.

For CRNs, we can use the Systems Biology Markup
Language (SBML) to represent programs [7]. It contains
tags for reactions, products, species, rate constants etc.
Matlab can directly process SBML, hence it can be passed
into our testing framework. In the example (Table I),
we used a textual format for our CRNs since these are
humanly readable. Internally, we use SBML, but provide
the final patched CRNs in both textual and SBML format.

To make the SBML work for CRNRepair, we modified in
a few ways. First, since repair operators use only existing
variables from the AST and faulty CRNs may exclude
some allowable species, we added all species to the SBML.
This is done using an annotation and does not impact how
Matlab processes the XML. Second, since Matlab requires
the Mass Action semantics (we have defaulted to 1.0 for
all reactions) and that is not part of the AST tree we have
modified the tree parser to handle this.

Last, we added some logic to ensure we are building cor-
rect SBML, such as avoiding the removal of both reactants
and products at the same time (which leads to a no-op).
We note that some CRNs may still not run to completion,
however, we avoid many of the obvious compile time issues.
As part of this process we have modified the PyGGI xml
tree code to work with our programs.

IV. Case Study
In this section, we present a study to evaluate the ability

of CRNRepair to create plausible patches in CRNs. We ask
two research questions.
RQ1: How effective is CRNRepair? For this research
question we measure effectiveness by counting the number
of patches obtained for a set of faults and the time to
repair. We then examine he different types of patches. We
first validate that they are correct repairs, and we then
classify the types of repairs we see.
RQ2: What is the impact of differing numbers of
epochs and iterations on the repairs? In the second
RQ we perform a study to evaluate the impact of varying
epochs versus iterations on the repair.

A. Study Subjects
For this work we use two of the subjects from Gerten et

al. [5]. We use all of the mutants for two of their programs
(Subtraction and Hailstone). Table II shows details of
the two subjects. Subtraction is the same program in
our working example previously described. The original
program has 2 reactions. Hailstone is a mathematical
function that returns X/2 when X is even and 3X+1 when
X is odd. It has 11 reactions. The third subject from that
paper is probabilistic, therefore we drop it.

In that work there are 9 mutant programs for sub-
traction and 10 for hailstone. Each program has a sin-
gle random mutation over the original. These include
adding/deleting reactions, adding, removing and/or re-
placing products or reactants. The mutations for each
mutant (S# for subtraction and H# for hailstone) are
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TABLE II
Subjects for study, with each reaction listed on the right. Mutants by subject on the left. For each subject the changed

reaction (R) and reaction number (#) is given.

Subtraction (S) ID Change R# Hailstone (H) ID Change R#
X1→ Y S1 X1 + X1→ X2 3 X1→ P O + H + M H1 2B + 3A→ null 7
X2 + Y → null S3 X1 + Y → null 2 P O + P O → P E H2 M → H 12

S4 X1 + X2→ Y → null 3 P E + P O → P O H3 CE → 3B + 6A 6
S5 Removed 1 P E + P E → P E H4 CE + P O + y → null 12
S6 X2 + Y + X1→ null 2 H + H → D H5 Removed 4
S7 Y → null 2 M → 3B + 6A H6 X1→ P O + H 1
S8 null→ X2 + X1 + Y 3 2B + 2A→ null H7 CO + P E + Y → A 11
S9 Y → X2 + X2 3 P E + D → P E + CE + Y H8 P O + A + Y → P O + CO + Y 9
S10 X2→ null 2 P O + A→ P O + CO + Y H9 2B + 2A + P O → null 7

CE + P O + Y → P O + D H10 CO + P E + Y + CE → P E + A 11
CO + P E + Y → P E + A

shown in Table II. They also provide a set of test cases
which find the mutants. We utilize these tests in our
implementation of CRNRepair. We added additional tests
for the validation to avoid overfitting and to ensure our
patches are plausible. We discuss this more in RQ1.

B. Methodology
For RQ1 we use the following experimental parameters.

We use the simulated annealing algorithm with a rolling
tabu list of 15. We use 10 epochs (trials) and 100 iterations.
We run experiments on a cluster of high performance
computers. Each node has an Intel(R) Xeon(R) Gold 6244
CPU @ 3.60GHz, RedHat Enterprise Linux 7, Matlab
2019a, and 2 GB of RAM.

To check plausibility we extend the test suites with an
additional set of manually designed test cases. This adds
16 and 12 concrete tests respectively to the subtraction
and hailstone. We run the programs using the set of
the original tests plus the new tests. We then manually
examine each patch and classify these into categories (1)
equivalent to the original, correct program, (2) function-
ally equivalent programs that speedup the computation,
and (3) functionally equivalent programs that slow down
the simulation.

For RQ2 we first select a subset of the mutants. We
chose 3 subtraction subjects which were harder to find
and 4 of the hailstone subjects. We then run simulated
annealing using different combinations of epochs and it-
erations. We doubled the overall iteration budget to 2000
(total epochs and iterations) and then selected sizes (i)
10-200, (ii) 20-100, (iii) 40-50 and (iv) 100-20, where the
first number represents epochs and the second is iterations
per epoch. Our algorithm ends an epoch when a solution
is found so the 2000 is an upper bound on the budget.

We use the number of patches found, the total runtime
and a metric we call per patch time which is the total
runtime divided by the number of patches found (it is
undefined when no patches are found).

V. Results
We now present the results for both of our research

questions. Resulting patches and other experimental ar-

tifacts are available on our supplementary website (see
https://github.com/LavaOps/CRNRepair/).

A. RQ1: CRNRepair Effectiveness

Table III shows data for the effectiveness of CRNRepair.
The first column is the program mutant labeled S#no and
H#no for subtraction (top) and hailstone (bottom). These
match the IDs from Gerten et al. [5]. There is no program
variant S2, because that one was determined to be an
equivalent mutant. The next column shows the number
of successful repairs (out of 10 epochs) followed by the
percent successful. For instance, S1 finds a repair for all
10 epochs (100%) while S3 has 3 successful epochs with a
(30% success). The next column shows the average number
of iterations for successful repairs. This excludes failed
repairs which all run to 100 iterations. The last column
shows the total run time for the 10 epochs in minutes.
This includes all epochs regardless of success

For subtraction, CRNRepair finds repairs for all faulty
programs, except S5 (an overall success rate of 73%). We
discuss S5 in more detail in Section VI. For 4 of the 9
programs: S1, S4, S8 and S9, we find a patch for all epochs.
For all others we find a patch for at least half of the
epochs. The average iteration where a solution is found
ranges from 2.7 in S4 to 48.6 in S6. The runtimes shown
in minutes for all 10 epochs range from 13 to 430 minutes.

For hailstone we find fewer patches. We find at least one
patch for half of the subjects. H6 finds a patch for more
than half of the epochs, while the others find a solution
in less than half (1 or 3 epochs). The average iterations
where a solution is found ranges from 9 to 40.7. Overall
14% of the epochs find a solution. Runtimes vary from 339
minutes to 650 minutes (or 10.8 hours).

We next look at results for the random search (shown
in Table IV). For subtraction we see that random search
has a similar success rate. The same set of four programs
always finds a solution. For the others a few less were found
(overall 63% of epochs found a patch). In hailstone random
finds a solution only for H9 and for only 2 of the 10 epochs.

We calculated patch lengths, and see an average patch
length of 1.4 and 3.1 respectively for subtraction for sim-
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ulated annealing and random search. For hailstone these
numbers are 1.1 and 1.5.

TABLE III
Count and percent of patches by Program Variant. This is
our standard implementation using Simulated Annealing, 10

epochs of 100 iterations each.

ID Num Percent Avg. Iters Time
Subtraction

S1 10 100 19.6 80
S3 5 50 47.2 324
S4 10 100 2.7 13
S5 0 0 – 430
S6 9 90 48.6 223
S7 7 70 44.6 254
S8 10 100 17.6 76
S9 10 100 10.1 37
S10 5 50 18.2 246

Hailstone
H1 3 30 16.7 399
H2 3 30 39.0 427
H3 0 0 – 440
H4 6 60 40.7 335
H5 0 0 – 650
H6 0 0 – 408
H7 0 0 – 423
H8 1 10 9.0 345
H9 1 10 37.0 381
H10 0 0 – 517

TABLE IV
Count of Repairs by Program Variant using CRNRepair

with random search

ID Num Percent Avg. Iters Time
Subtraction

S1 10 100 21.9 83
S3 3 30 34.3 355
S4 10 100 12.5 52
S5 0 0 – 429
S6 6 60 50.3 321
S7 6 60 38.5 269
S8 10 100 17.7 69
S9 10 100 17.8 77
S10 2 20 39 392

Hailstone
H1 0 0 – 596
H2 0 0 – 490
H3 0 0 – 311
H4 0 0 – 821
H5 0 0 – 849
H6 0 0 – 677
H7 0 0 – 420
H8 0 0 – 419
H9 2 20 52.5 294
H10 0 0 – 709

1) Patch Correctness: We test each patched program
with its expanded test suite and confirm we find no
failures. Once a patch passes, we manually inspect each to
confirm it is plausible and characterized each by its repair
type. Table V shows this data. We show only variants with
at least one patch. The first column is the program variant.
The next three columns are the repair types. The last
column counts the number of patches that are validated
as correct programs.

As we can see in subtraction, the patch types are split
between finding a patch that creates the original program
presented in Gerten et al. [12] (the golden patch). The
other repairs are functionally correct, but have additional
reactions that speed up the speed of computation. There
are also 2 repairs that slowdown either the computation
or the simulation. All patches are deemed correct.

Table VI shows similar data for the patches found by
the random algorithm. We see a similar breakout of the
types of repairs. All are determined to be correct.

TABLE V
Counts of types of repairs found by CRNRepair using

simulated annealing. Golden repairs match the models from
[5], Speedup increases the computation speed, Slowdown

decreases the computation speed. No. Valid are the number
of correct repairs.

ID Golden Speedup SlowDown No. Valid
Subtraction

S1 7 3 0 10
S3 5 0 0 5
S4 3 7 0 10
S6 8 1 0 9
S7 5 2 0 7
S8 2 8 0 10
S9 2 7 1 10
S10 5 0 0 5
Total 37 28 1 66

Hailstone
H1 3 0 0 3
H2 1 1 1 3
H4 5 1 0 6
H8 1 0 0 1
H9 1 0 0 1
Total 11 2 1 14

TABLE VI
Counts of types of repairs found by CRNRepair using

random search. Golden repairs match the models from [5],
Speedup increases the computation speed. No. Valid are the

number of correct repairs.

ID Golden Speedup No. Valid
Subtraction

S1 7 3 10
S3 2 1 3
S4 5 5 10
S6 5 1 6
S7 4 2 6
S8 4 6 10
S9 6 4 10
S10 0 2 2
Total 33 24 57

Hailstone
H9 1 1 2

Summary of RQ1. CRNRepair is able to find
patches for all but one of the subtraction programs
and half of the hailstone programs. Simulated an-
nealing finds more patches than random search. All
patches are determined to be plausible and correct.
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B. RQ2: Epochs vs. Iterations
We now examine our experiments to understand the im-

pact of epochs versus iterations. Table VII shows the four
configurations. The next seven columns show the number
of patches found by program variant. This is followed by
the total time in minutes for all of the programs in that
configuration to run. Next we show the total number of
patches, followed by the percent of epochs that found a
patch. The last column has the per-patch time. This is
the total time divided by the number of patches found.
We want to minimize this.

As we can see, except for H9, all configurations find
some number of patches. The largest number of patches
(136) is found by the 100 epoch, 20 iteration configuration.
It also has the smallest per patch time (35.1 minutes),
suggesting this is a good configuration. However, if we
look at the percent of patches per epoch, it is only 19.4%
suggesting that 20 iterations is likely insufficient. At the
other extreme if we examine the 10 epoch, 200 iteration
configuration, we have a high per-epoch success percent
(64.3%), and the overall run time is the shortest, but the
per-patch time is higher (69.0 minutes). This is also the
only configuration that solved H9. We examined the logs,
and found that these solutions were found at 44 and 150
iterations. Last we examine the 40 epoch, 50 iteration
configuration. This seems to be a nice middle ground. We
have a 38.2% per-epoch success rate, but the per-patch
time is only 41.9 minutes. The per-epoch success is double
that of the 100 epoch configuration and the per patch time
is only 6 minutes more.

Summary of RQ2. We find that more epochs
appear to reduce the per-patch time, while more
iterations increase the chance of finding a patch
per epoch. If we only consider per patch time,
it is better to run more epochs than iterations,
but if we want a high per epoch success rate, we
need to increase the iterations. The 40 epoch, 50
iteration configuration is a good configuration for
these programs.

VI. Discussion
First we examine the types of repairs made by CRN-

Repair. If we examine Tables V and VI, we can see that
more than 50% of the repairs result in the golden CRN
as described in Gerten et al. [5]. We discuss some of the
other types in more detail next.

Speedup manifests itself by adding two different types
of reactions to the CRN. First, we see repaired CRNs
with duplicate reactions,(e.g. S1 4). When this occurs,
the probability of that reaction firing increases, and this
decreases the overall simulation time.

The other mechanism we found that increases the overall
speed of the CRN computation time involves reactions
of the form X1 + X2 −→ null. When a repaired CRN

includes this type of reaction, such as in the S9 subject
for subtraction, X1 and X2 are removed from the system
in equal numbers. Since the CRN computes X1−X2 and
removing the same number of each does not change the
result of subtraction, the CRN still correctly computes the
difference. Depending on how large the initial molecule
counts of X1 and X2, the computation time can be
significantly faster.

We also saw some repairs that instead slow down the
simulation and/or computation times. For example, a
repair for the S9 subject added the reaction X2 + Y −→
X2 + X1. This reaction moves a Y species back to a X1
species, effectively undoing the first reaction X1 −→ Y
as long as an X2 species is present. Thus, a number
of extra reactions must occur for the CRN to complete,
lengthening the computation time. Note that the speed of
reactions(determined by either rate constants or catalysts)
can change not only the performance of the CRN, but also
the correctness.

Repairs can also slow down the Matlab execution time
as well as the computation time. It is arguable if reactions
such as X1 −→ X1 change the CRN, since it is easy to prove
to have the same functional result as the CRN without it.
However, repairs with this type add computation time (the
time it takes to destroy X1 and then recreate it) and add
Matlab execution time. The latter is caused by numerous
CPU cycles required to simulate a reaction that does not
move the computation towards completion, (e.g. S7 3).

While we were able to repair a large number of the pro-
grams studied, we also had some instances where we were
unsuccessful. We now discuss some limitations and future
directions based on observations about these instances.
Mutation Operators We found that some of the pro-
grams which did not repair (e.g. S5) are lacking in genetic
material needed to create a fix with the existing mutation
operators. The insert operator copies another reaction (in
this case it only has reaction 2) and that reaction is of
a different form from the one that is needed for repair.
Simply moving and copying statements and replacing
species is not enough to fix the program. Instead we need
an operator to add (completely new) reactions. We plan
an extension that will provide this functionality.
Fault localization. One of the important aspects of
program repair is a good fault localization technique to
guide the repair. In this work we lack this guidance. Given
the nature of how a CRN program works, we expect most
reactions to occur in all execution traces, hence, the tra-
ditional notion of coverage used in fault localization tools
will not work. This is an interesting research direction. We
plan to start by using reaction counting (number of times
individual reactions occur) as a proxy for coverage.
Fitness. In this paper we have used a simple fitness,
the count of failed simulations. However, we have ob-
served large plateaus during search. We have considered
more complex fitness functions that try to capture the
spread across abstract tests and incorporate flakiness, but
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TABLE VII
Epochs vs. Iterations

Configs. Patches Found by Program Metrics
Epochs Iter. S3 S6 S10 H1 H2 H4 H9 Time (mins) Tot. Patch Percent Patch Time(mins)
10 200 4 10 8 6 8 7 2 3,104.6 45 64.3 69.0
20 100 6 15 13 6 10 14 0 3,698.1 64 45.7 57.8
40 50 15 23 16 11 25 17 0 4,487.1 107 38.2 41.9
100 20 20 41 13 10 27 25 0 4,775.3 136 19.4 35.1

without significant improvement. We believe this is an
interesting future direction.
Test Flakiness. In our prior work, ChemTest [5], test
flakiness (and mutant flakiness) was inherent in the testing
process. We are not directly considering flakiness here. The
correct CRNs are stable and should not exhibit this behav-
ior, hence we are using the count of failed simulations to
incorporate this metric (we run each simulation 10 times).
But we believe there is interesting information that we are
losing. We also want to support other types of CRNs that
may not be stable. Allowing for flakiness during repair is
an interesting direction that we believe has relevance for
traditional repair frameworks as well.
AST for SBML. We use a standard SBML representa-
tion for this work (with minor additions as annotations).
However, SBML is not hierarchical; it is flat. This means
we lack much of the program structure that is contained
in a traditional AST. We believe a refined SBML that
provides a more modular view of the CRN, with more
structural depenencies between reactions, may help im-
prove localization and repair.

VII. Conclusions and Future Work
In this paper we have presented CRNRepair, a program

repair framework for CRNs. We have built this on top
of the PyGGI framework. We use the Matlab SimBiology
library to calculate the fitness. We have evaluated this on
19 mutant programs from two CRNs and can repair 90%
from the smaller CRN, and 50% from the other.

We have identified several interesting avenues for future
work. First, we plan to build a reaction construction
operator, that adds new reactions to the CRN. Second,
we are adding additional search algorithms, and refining
our existing ones. Third, we plan to explore the use
of a hierarchical SBML which has a more refined AST
structure. Fourth, we are working on alternative fitness
functions. Last, we plan to run further experiments and
evaluate on larger CRNs.
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